Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535802

RESUMO

DepA, a pyrroloquinoline quinone (PQQ)-dependent enzyme isolated from Devosia mutans 17-2-E-8, exhibits versatility in oxidizing deoxynivalenol (DON) and its derivatives. This study explored DepA's substrate specificity and enzyme kinetics, focusing on DON and 15-acetyl-DON. Besides efficiently oxidizing DON, DepA also transforms 15-acetyl-DON into 15-acetyl-3-keto-DON, as identified via LC-MS/MS and NMR analysis. The kinetic parameters, including the maximum reaction rate, turnover number, and catalytic efficiency, were thoroughly evaluated. DepA-PQQ complex docking was deployed to rationalize the substrate specificity of DepA. This study further delves into the reduced toxicity of the transformation products, as demonstrated via enzyme homology modeling and in silico docking analysis with yeast 80S ribosomes, indicating a potential decrease in toxicity due to lower binding affinity. Utilizing the response surface methodology and central composite rotational design, mathematical models were developed to elucidate the relationship between the enzyme and cofactor concentrations, guiding the future development of detoxification systems for liquid feeds and grain processing. This comprehensive analysis underscores DepA's potential for use in mycotoxin detoxification, offering insights for future applications.


Assuntos
Micotoxinas , Tricotecenos , Especificidade por Substrato , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Front Microbiol ; 13: 957148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504774

RESUMO

Mycotoxins are toxic secondary metabolites produced by certain genera of fungi including but not limited to Fusarium, Aspergillus, and Penicillium. Their persistence in agricultural commodities poses a significant food safety issue owing to their carcinogenic, teratogenic, and immunosuppressive effects. Due to their inherent stability, mycotoxin levels in contaminated food often exceed the prescribed regulatory thresholds posing a risk to both humans and livestock. Although physical and chemical methods have been applied to remove mycotoxins, these approaches may reduce the nutrient quality and organoleptic properties of food. Microbial transformation of mycotoxins is a promising alternative for mycotoxin detoxification as it is more specific and environmentally friendly compared to physical/chemical methods. Here we review the biological detoxification of the major mycotoxins with a focus on microbial enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...